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The present article is the preliminary part of a series devoted to extending the
foundation of the Asymptotic Linearity Theorems (ALTs), which prove the Fukui
conjecture concerning the additivity problem of the zero-point vibrational energies of
hydrocarbons. In this article, we establish a theorem, referred to as the G Bounded-
ness Theorem, through which one can easily form a chain of logical implications that
reduces a proof of the Fukui conjecture to that of the Piecewise Monotone Lemma
(PML). This chain of logical implications serves as a basis throughout this series of
articles. The PML, which has been indispensable for demonstrating any version of the
ALTs and has required for its proof a mathematical language not generally known to
chemists, is directly related to the theory of algebraic curves. Proofs of the original and
enhanced versions of the PML are obtainable via resolution of singularities and related
methods.
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1. Introduction

In recent works [1,2] concerning the Fukui conjecture, the following log-
ical implications have been established between the validity of the conjecture
and some fundamental theorems in the repeat space theory (RST) [3], called the
Asymptotic Linearity Theorems (ALTs):

Special Functional ALT ⇒ Functional ALT ⇒ the Fukui conjecture. (1.1)

We recall from [1] that the Fukui conjecture on the additivity problem of the
zero-point vibrational energies of hydrocarbons played a prominent role in the
initial development of the repeat space theory (RST) and that the conjecture
continues to be of vital significance in the recent development of the theory of
the generalized repeat space Xr (q, d) [4–7]. (For a review of the RST, the reader
is referred to the paper [3] entitled “Note on the repeat space theory – its devel-
opment and communications with Prof. Kenichi Fukui”.)

The present article is the preliminary part of a series devoted to extend-
ing the foundation of the ALTs, which prove the Fukui conjecture, by using
tools from algebraic geometry and related fields. The main purpose of this arti-
cle is to establish what is called the G Boundedness Theorem, which is of major
importance in this series of articles and is applicable to both the theory of the
original repeat space Xr (q) (cf. [1,2] and references therein) and the theory of
the generalized repeat space Xr (q, d). Through the G Boundedness Theorem,
one can easily form a chain of logical implications that reduces a proof of the
Fukui conjecture to that of the Piecewise Monotone Lemma (PML) (version 1)
proved earlier (cf. lemma 2.1 in section 2). The PML, which has been indispens-
able for demonstrating any version of the ALTs and has required for its proof
a mathematical language not generally known to chemists, is directly related to
the theory of algebraic curves. In this article, we establish, for the first time, the
following logical implications:

PML ⇒ G Boundedness Theorem ⇒ Special Functional ALT ⇒
Functional ALT ⇒ the Fukui conjecture. (1.2)

This chain of logical implications serves as a basis throughout this series of
articles.

In section 2, we establish the G Boundedness Theorem by using the PML,
namely, we obtain the following implication:

PML ⇒ G Boundedness Theorem. (1.3)
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In section 3, we demonstrate the following implication:

G Boundedness Theorem ⇒ Special Functional ALT. (1.4)

Consequently, we get (1.2) by combining (1.1), (1.3), and (1.4).
In subsequent parts of this series, a new version of PML, which is more

powerful than the PML version 1, will be developed by using resolution of sin-
gularities and related methods.

2. The G Boundedness Theorem

Throughout, let Z
+, R, and C denote, respectively, the set of all positive

integers, real numbers, and complex numbers.
To formulate the G Boundedness Theorem described in section 1, we need

the following definition and notation.

Definition 2.1. Let S1 and S2 be nonempty subsets of R. A function f : S1 → S2

is said to be nondecreasing if x1�x2 implies f (x1)�f (x2) for all x1, x2 ∈ S1. A
function f : S1 → S2 is said to be nonincreasing if x1�x2 implies f (x2)�f (x1)

for all x1, x2 ∈ S1. A function f : S1 → S2 is said to be monotone if it is either
nondecreasing or nonincreasing.

Let a, b ∈ R with a < b and let I = [a, b]. A function f : I → R is said to
be piecewise monotone if there exists a finite partition

a = x0 < x1 < · · · < xn = b (n ∈ Z
+) (2.1)

of the interval I such that the restriction f |[xi−1, xi ] is monotone for all
i∈{1, . . . , n}. In this case, f is said to have n-partition of monotonicity.

A real-valued function on a subset S ⊂ R is called real analytic on S if it is
the restriction to S of a function which is real analytic on some open set O ⊃ S.

Notation 2.1. Let a, b ∈ R with a < b and let I = [a, b].
If f : I → R is piecewise monotone, let

Mo(f ):= min{n ∈ Z
+:f has n-partition of monotonicity}. (2.2)

The Mo(f ) is called the monotonicity number of f .
If f :I → R is not piecewise monotone, let

Mo(f ) = ∞. (2.3)

Cω(I): the ring (UFD) of all real analytic functions defined on I .
Cω(I)[λ]: the polynomial ring (UFD) over Cω(I) in the indeterminate λ.
C(I): the ring of all real-valued continuous functions defined on I .
C(I)[λ]: the polynomial ring over C(I) in the indeterminate λ.
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R[λ]: the polynomial ring (UFD) over R in the indeterminate λ.
For each θ ∈ I , let Evθ :C(I)[λ] → R[λ] be the ring homomorphism defined by

Evθ (c0λ
n + c1λ

n−1 + · · · + cn) = c0(θ)λn + c1(θ)λn−1 + · · · + cn(θ). (2.4)

VI (ϕ): the total variation of a real-valued function ϕ on I , i.e.,

VI (ϕ) = sup
�

n∑
i=1

|ϕ(ti) − ϕ(ti−1)|. (� : a = t0�t1� · · · �tn = b) (2.5)

CBV (I): the normed space of all real-valued continuous functions of bounded
variation on I equipped with the norm given by

‖ϕ‖ = sup{|ϕ(t)| : t ∈ I } + VI (ϕ). (2.6)

Remark 2.1. It is not difficult to verify that Cω(I) is a UFD (unique factoriza-
tion domain) and hence that Cω(I)[λ] is a UFD. It is easy to see that Cω(I) ⊂
C(I), Cω(I)[λ] ⊂ C(I)[λ], and that neither C(I) nor C(I)[λ] is a UFD. For the
fundamental properties of UFDs, the reader is referred to, e.g. [8,9].

Now we are ready to state and prove the G Boundedness Theorem.

Theorem 2.1. (G Boundedness Theorem). Let ã, b̃ ∈ R with ã < b̃ and let Ĩ =
[ã, b̃]. Let p ∈ Cω(Ĩ )[λ] be a monic polynomial of degree q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (2.7)

Suppose that for any θ ∈ Ĩ , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (2.8)

over the field R has q real roots. Define the mapping f : Ĩ → R[λ] by

f (θ) = Evθ (p), (2.9)

and let rj (f (θ)) denote the jth root of f (θ) counted with multiplicity, arranged
in the increasing order, where j ∈ {1, · · · , q}. Let a, b ∈ R with a < b and let
I = [a, b]. Suppose that I contains all the roots of f (θ) for all θ ∈ Ĩ . Then, the
following statements are true:

(i) For each ϕ ∈ CBV (I), the function θ 	→ ∑q

j=1 ϕ(rj (f θ))) defined on Ĩ

is real-valued continuous and of bounded variation, i.e., an element of
CBV (Ĩ ).
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(ii) Define the linear operator G: CBV (I) → CBV (Ĩ ) by

G(ϕ)(θ) =
q∑

j=1

ϕ(rj (f (θ))). (2.10)

Then, G is bounded:

‖G‖ < ∞. (2.11)

Proof. (i) Since CBV (Ĩ ) is a linear space, it suffices to prove that for each
j ∈ {1, . . . , q} and ϕ ∈ CBV (I), the function θ 	→ ϕ(rj (f (θ))) defined on Ĩ

is real-valued continuous and of bounded variation.
Fix any j ∈ {1, . . . , q} and define the function λj : Ĩ → R by

λj (θ) = rj (f (θ)). (2.12)

(To see that the function λj is well-defined, recall the assumption that polyno-
mial (2.8) has always q real roots.)

First, under the assumption of the theorem, note that the coefficients of
p = λq + c1λ

q−1 + · · · + cq ∈ Cω(Ĩ )[λ] are real-analytic, hence real-valued con-
tinuous functions defined on Ĩ . This fact and proposition 2.1 following theorem
2.1 easily imply that the λj is continuous:

λj ∈ C(Ĩ ). (2.13)

Consequently, the function θ 	→ ϕ(λj (θ)) defined on Ĩ is real-valued continu-
ous whenever ϕ ∈ CBV (I). (To see that this function is well-defined, recall the
assumption that I contains all the roots of f (θ) for all θ ∈ Ĩ .)

Second, note that the lemma 2.1 (PML) given at the end of this section
implies that the λj is piecewise monotone:

Mo(λj ) < ∞. (2.14)

Consider any partition of the interval Ĩ = [ã, b̃]

�:ã = θ0�θ1� · · · �θn = b̃. (2.15)

Let ϕ be any element of CBV (I). We then obtain the following inequality:

n∑
k=1

|ϕ(λj (θk)) − ϕ(λj (θk−1))|�Mo(λj )VI (ϕ). (2.16)

Consequently, the function θ 	→ ϕ(λj (θ)) defined on Ĩ is of bounded variation
whenever ϕ ∈ CBV (I).
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(ii) Let θ0, θ1, . . . , θn be as in (2.15). Observe that

n∑
k=1

|G(ϕ)(θk) − G(ϕ)(θk−1)|�
q∑

j=1

n∑
k=1

|ϕ(λj (θk)) − ϕ(λj (θk−1))|

�


 q∑

j=1

Mo(λj )


VI (ϕ). (2.17)

Straight from the definition of the total variation, we get

VĨ (G(ϕ))�


 q∑

j=1

Mo(λj )


VI (ϕ). (2.18)

By (2.18) and the easily verifiable relation:

sup{|G(ϕ)(θ)| : θ ∈ Ĩ }�q sup{|ϕ(t)| : t ∈ I }, (2.19)

one obtains immediately

‖G(ϕ)‖� max


q,

q∑
j=1

Mo(λj )


 ‖ϕ‖�


 q∑

j=1

Mo(λj )


 ‖ϕ‖ (2.20)

for all ϕ ∈ CBV (I). This shows that G is bounded:

‖G‖�
q∑

j=1

Mo(λj ) < ∞. (2.21)

Proposition 2.1. Let a,b ∈ R with a < b and let I = [a, b]. Let p ∈ C(I)[λ] be a
monic polynomial of degree q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (2.22)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (2.23)

over the field R has q real roots, which we denote by λ1(θ)�λ2(θ)� · · · �λq(θ).
Then, all the λj ’s are continuous, i.e.,

λj ∈ C(I) (2.24)

for all j ∈ {1, . . . , q}.
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Proof. Fix any θ ∈ I , and fix any sequence θn ∈ I that converges to θ . For the
proof of the proposition, we have only to verify that for each j ∈ {1, . . . , q},

λj (θn) → λj (θ) (2.25)

as n → ∞.
Let g, gn : C → C be the polynomial functions defined by

g(λ) = λq + c1(θ)λq−1 + · · · + cq(θ), (2.26)

gn(λ) = λq + c1(θn)λ
q−1 + · · · + cq(θn) (n ∈ Z

+). (2.27)

Let K be any compact subset of C.
First, note that for each j ∈ {1, . . . , q}, we have

sup
λ∈K

|λq−j | < ∞ (2.28)

since the function λ 	→ λq−j is continuous on compact set K. Second, note that
for each j ∈ {1, . . . , q}, we have

|cj (θ) − cj (θn)| → 0 (2.29)

as n → ∞, since cj is continuous at θ .
We now see that

0� sup
λ∈K

|g(λ) − gn(λ)|�
q∑

j=1

|cj (θ) − cj (θn)| sup
λ∈K

|λq−j | → 0, (2.30)

hence that

sup
λ∈K

|g(λ) − gn(λ)| → 0 (2.31)

as n → ∞. Thus, gn converges to g uniformly on compact subsets of C.
Let k denote the number of elements in the set {λ1(θ), . . . , λq(θ)}, i.e.,

k = Card {λ1(θ), . . . , λq(θ)}, (2.32)

let µ1 < · · · < µk be such that

{µ1, . . . , µk} = {λ1(θ), . . . , λq(θ)}. (2.33)

For each j ∈ {1, . . . , k}, let mj denote the multiplicity of root µj :

mj = Card {i ∈ {1, . . . , q} : µj = λi(θ)}. (2.34)

Let d be the minimum length of intervals [µj, µj+1]:

d = min{µj+1 − µj :j ∈ {1, . . . , k − 1}}. (2.35)
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Given ε > 0 with d/3 > ε, then for any i ∈ {1, . . . , k} and for any λ on the
sphere {λ ∈ C: |λ − µi | = ε}, we have

g(λ) 
= 0. (2.36)

Now we may apply the following Hurwitz’s Theorem, and deduce that for any
i ∈ {1, . . . , k}, there exists an integer n0(i) such that for all n�n0(i), the poly-
nomial gn has mi zeros (counted with multiplicity) in the open disc D(µi, ε) =
{λ ∈ C:|λ − µi | < ε}. Let

N := max{n0(i) : i ∈ {1, . . . , k}}. (2.37)

Then, we see that for any i ∈ {1, . . . , k} and any n�N, gn has mi zeros
(counted with multiplicity) in the open disc D(µi, ε). This implies that for any
j ∈ {1, . . . , q}

λj (θn) ∈ {λ ∈ R:|λ − λj (θ)| < ε} (2.38)

for all n�N , showing that λj ∈ C(I).

Hurwitz’s Theorem. Let G ⊂ C be a region, let H(G) denote the set of all
complex-valued analytic functions on G, and let f, fn ∈ H(G) be such that fn

converges to f uniformly on compact subsets of G. Let D(a, r) = {z ∈ C: |z −
a|�r} be a closed disc contained in G. Suppose that f 
≡ 0 and f (z) 
= 0 for
|z − a| = r. Then, there is an integer n0 such that for all n�n0, f and fn have
the same number of zeros in the open disc D(a, r) = {z ∈ C:|z−a| < r} (counted
with multiplicity).

(Cf. for example, [10].)

Remark 2.2. More general forms of proposition 2.1 are well known. We have for-
mulated proposition 2.1 for our immediate purpose restricting to the case where
the coefficients of polynomial p are all in C(I). We remark that the conclusion
of Hurwitz’s Theorem easily follows from Rouché’s Theorem and that proposi-
tion 2.1 can also be proved by using the latter theorem.

Lemma 2.1. (Piecewise Monotone Lemma (PML) version 1). Let a, b ∈ R with
a < b and let I = [a, b]. Let p ∈ Cω(I)[λ] be a monic polynomial of degree
q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (2.39)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (2.40)
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over the field R has q real roots, which we denote by λ1(θ)�λ2(θ)� · · · �λq(θ).
Then, all the λj ’s are piecewise monotone, i.e.,

Mo(λj ) < ∞ (2.41)

for all j ∈ {1, . . . , q}.

Proof. This is equivalent to lemma 4 in [11].

3. Reduction of a proof of the Special Functional Asymptotic Linearity
Theorem to that of the G Boundedness Theorem

For the above stated goal of the reduction, we begin this section by pre-
paring the following propositions 3.1 and 3.2. The reader is referred to [1,2] for
the definitions of notions and symbols in these propositions and the subsequent
theorems.

Proposition 3.1. Suppose that {AN } ∈ X#α(q) and that AN is given by

AN =
v∑

n=−v

P n
N ⊗ Qn, (3.1)

for all N ∈ Z
+, where v is a nonnegative integer and Q−v, Q−v+1, . . . , Qv are

q ×q real matrices such that Q−n is the transpose of Qn for all n ∈ {0, 1, . . . , v}.
Let F be the FS-map associated with the {AN }, i.e., let F ∈ Hf (q) be a mapping
defined by

F(θ) =
v∑

n=−v

(exp(inθ))Qn, (3.2)

θ ∈ R. Define functions hj : R → R, j ∈ {1, . . . , q} by

hj (θ) = λj (F (θ)), (3.3)

where λj (F (θ)) denotes the j th eigenvalue of the Hermitian matrix F(θ)

counted with multiplicity, arranged in the increasing order. Then, we have

(i) hj is Lipschitz continuous for all j ∈ {1, . . . , q}.
(ii) AN can be block-diagonalized as follows:

(UN ⊗ Iq)
−1AN(UN ⊗ Iq)

= B-diag(F (2π/N), F (2π2/N), . . . , F (2πN/N)), (3.4)

where UN denotes the N × N unitary matrix whose elements are

(UN)mn = N−1/2 exp(2πmni/N), (3.5)
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Iq denotes the q × q unit matrix.

(iii) If I is a closed interval compatible with {AN }, and if ϕ is a real-valued
function defined on I , then

Trϕ(AN) =
N∑

r=1

q∑
j=1

ϕ(λj (F (2πr/N))). (3.6)

Proof. Both (i) and (ii) were proved in [12]. (The proof of (ii) was reproduced
in [1].) We thus prove here only part (iii):

Since AN and the right-hand side of equality (3.4) are similar, the eigen-
values of AN and those of the block-diagonal matrix coincide; thus we have

Trϕ(AN) =
qN∑
i=1

ϕ(λi(AN)) =
N∑

r=1

q∑
j=1

ϕ(λj (F (2πr/N))), (3.7)

where λi(AN) denotes the ith eigenvalue of AN counted with multiplicity,
arranged in the increasing order.

Proposition 3.2. Let Ĩ = [0, 2π ], define the sequence of linear functionals β̃N :CBV

(Ĩ ) → R by

β̃N(ϕ) =
(

N∑
r=1

ϕ(2πr/N)

)
− (N/(2π))

∫ 2π

0
ϕ(θ)dθ. (3.8)

Then, we have

sup{‖β̃N‖ : N�1}�1. (3.9)

Proof. Observe that

|β̃N(ϕ)| =
∣∣∣∣∣

N∑
r=1

ϕ(2πr/N) − (N/(2π))

∫ 2π

0
ϕ(θ)dθ

∣∣∣∣∣ (3.10)

� (N/(2π))

N∑
r=1

∫ 2πr/N

2π(r−1)/N

|ϕ(2πr/N) − ϕ(θ)|dθ

� (N/(2π))

N∑
r=1

∫ 2πr/N

2π(r−1)/N

V[2π(r−1)/N,2πr/N ](ϕ)dθ

� VĨ (ϕ)

� sup{|ϕ(t)| : t ∈ Ĩ } + VĨ (ϕ) = ‖ϕ‖,
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for all ϕ ∈ CBV (Ĩ ) and N ∈ Z
+, from which the conclusion follows immediately.

Theorem 3.1. (Special Functional ALT, Xα(q) version). Let {AN } ∈ X#α(q) be a
fixed standard α sequence, let I be a fixed closed interval compatible with {AN }.
Then, there exist functionals α, β ∈ AC(I)∗ = B(AC(I), R) such that

Trϕ(AN) = α(ϕ)N + β(ϕ) + o(1) (3.11)

as N → ∞, for all ϕ ∈ AC(I).

Before proving theorem 3.1, we note that the following theorem 3.1#, which
is a weaker version of theorem 3.1, is easily proved.

Theorem 3.1.# Let {AN } ∈ X#α(q) be a fixed standard α sequence, let I be
a fixed closed interval compatible with {AN }. Then, there exists a functional
α ∈ AC(I)∗ = B(AC(I), R) such that

Trϕ(AN) = α(ϕ)N + o(N) (3.12)

as N → ∞, for all ϕ ∈ AC(I).

Proof. The conclusion easily follows from the fact that X#α(q) ⊂ Xr(q) and the
former part of the proof of the Functional ALT in [1], the part which involves
propositions (a1), (a2), (a3), and (a4).

Proof of theorem 3.1. Let α ∈ AC(I)∗ = B(AC(I), R) be as in theorem 3.1# and
note that α whose existence is asserted in theorem 3.1# is unique since

α(ϕ) = lim
N→∞

[Trϕ(AN)]/N (3.13)

for all ϕ ∈ AC(I). Define the sequence of linear functionals βN ∈ AC(I)∗ =
B(AC(I), R) by

βN(ϕ) = Trϕ(AN) − α(ϕ)N. (3.14)

Suppose that for each N ∈ Z
+, we are given an element

τN ∈ AC(I)∗ = B(AC(I), R). (3.15)

Recalling the fact that P(I) is a dense subset of AC(I):

P(I) = AC(I) (3.16)

(cf. [13]), consider the following four propositions:

(t1) for all ϕ ∈ P(I), exists in R,

(t2) sup {‖τN‖:N�1} < ∞,
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(t3) for all ϕ ∈ AC(I), limN→∞ τN(ϕ) exists in R,

(t4) τ : AC(I) → R defined by

τ(ϕ) = lim
N→∞

τn(ϕ) (3.17)

is a bounded linear operator: τ ∈ AC(I)∗ = B(AC(I), R).

By (3.16) and theorem 4.3(iii) in [1], we see that (t1) and (t2) imply (t3) and (t4).
Set τN = βN and notice that for the proof of the theorem, it remains to

prove that

βN ∈ AC(I)∗ = B(AC(I), R) (3.18)

for all N ∈ Z
+, and that

(b1) for all ϕ ∈ P(I), limN→∞ βN(ϕ) exists in R,

(b2) sup{‖βN‖:N�1} < ∞.

But, (b1) is an immediate consequence of theorem 4.1 in [1]. Therefore, the proof
of the theorem is reduced to the following theorem 3.2.

Theorem 3.2. (βN Uniform Boundedness Theorem, X#α(q) version). Let {AN } ∈
X#α(q) be a fixed standard α sequence, let I be a fixed closed interval compatible
with {AN }. Define the sequences of linear functionals βN : AC(I) → R by

βN(ϕ) = Trϕ(AN) − α(ϕ)N, (3.19)

where α(ϕ) := limN→∞[Trϕ(AN)]/N.

Then,

βN ∈ AC(I)∗ = B(AC(I), R) (3.20)

for all N ∈ Z
+, and we have

sup{‖βN‖ : N�1} < ∞. (3.21)

Proof. To see that βN ∈ AC(I)∗, note that the following relations

|βN(ϕ)|
�|Trϕ(MN)| + |α(ϕ)N |
�2qN(sup{|ϕ(t)| : t ∈ I })
�2qN(sup{|ϕ(t)| : t ∈ I } + VI (ϕ)) = 2qN‖ϕ‖ (3.22)

hold for all ϕ ∈ AC(I) and N ∈ Z
+.
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Let F be the FS map associated with {AN }. Recall theorem 6.1 (Compat-
ibility Theorem) in [1], and notice that since I is compatible with {AN } by the
assumption, I is also compatible with F , i.e., I contains all the eigenvalues of
F(θ) for all θ ∈ R. Let Ĩ = [0, 2π ] and define the linear operator G : CBV (I) →
CBV (Ĩ ) by

G(ϕ)(θ) =
q∑

j=1

ϕ(λj (F (θ))), (3.23)

where λj (F (θ)) denotes the j th eigenvalue of the Hermitian matrix F(θ)

counted with multiplicity, arranged in the increasing order. (Note: To see that G

is well-defined, see theorem 3.3(i) given below.)
Let G0 be the restriction of G to the linear subspace AC(I):

G0 := G|AC(I). (3.24)

Then, proposition 3.1(iii) implies that

Trϕ(AN) =
N∑

r=1

G0(ϕ)(2πr/N) (3.25)

for all ϕ ∈ AC(I), hence that

α(ϕ) = lim
N→∞

[Trϕ(AN)]/N = (1/(2π))

∫ 2π

0
G0(ϕ)(θ)dθ (3.26)

for all ϕ ∈ AC(I).
Define β̃N : CBV (Ĩ ) → R as in proposition 3.2, and notice that

βN = β̃N ◦ G0 (3.27)

for all N ∈ Z
+. This and proposition 3.2 imply that

‖βN‖�‖β̃N‖‖G0‖�‖G0‖�‖G‖ (3.28)

for all N ∈ Z
+. By the following theorem, theorem 3.3, inequality (3.21) holds.

Theorem 3.3. (G Boundedness Theorem). Let q ∈ Z
+, let v be a nonnegative

integer, and let Q−v, Q−v+1, . . . , Qv be q × q real matrices such that Q−n is the
transpose of Qn for all n ∈ {0, 1, . . . , v}. For each θ ∈ R, let F(θ) denote the
q × q Hermitian matrix defined by

F(θ) =
v∑

n=−v

(exp(inθ))Qn. (3.29)
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For each j ∈ {1, . . . , q} and θ ∈ R, let λj (F (θ)) denote the jth eigenvalue of
the Hermitian matrix F(θ) counted with multiplicity, arranged in the increasing
order. Let a, b ∈ R with a < b and let I = [a, b]. Let ã, b̃ ∈ R with ã < b̃ and
let Ĩ = [ã, b̃]. Suppose that I contains all the eigenvalues of F(θ) for all θ ∈ Ĩ .
Then, the following statements are true:

(i) For each ϕ ∈ CBV (I), the function θ 	→ ∑q

j=1 ϕ(λj (F (θ))) defined on
Ĩ is real-valued continuous and of bounded variation, i.e., an element
of CBV (Ĩ ).

(ii) Define the linear operator G : CBV (I) → CBV (Ĩ ) by

G(ϕ)(θ) =
q∑

j=1

ϕ(λj (F (θ))). (3.30)

Then, G is bounded:

‖G‖ < ∞. (3.31)

Proof. Consider the characteristic equation

det(λIq − F(θ)) = 0, (3.32)

where Iq denotes the q × q unit matrix. For each θ ∈ C, the left-hand side can
be written as a monic polynomial of degree q:

det(λIq − F(θ)) = λq + d1(θ)λq−1 + · · · + dq(θ). (3.33)

In view of the analyticity of each entry of F(θ) and the definition of the deter-
minant, dj : θ 	→ dj (θ) are obviously all analytic functions on C. They are real-
valued on R since for each θ ∈ R, all the roots of equation (3.32) are real. In
fact, for each θ ∈ R, the left-side of equation (3.32) can be expressed by

det(λIq − F(θ)) =
q∏

j=1

(λ − λj (F (θ))), (3.34)

where λj (F (θ)), the j th eigenvalue of the Hermitian matrix F(θ) counted
with multiplicity, arranged in the increasing order, is clearly real. [Note: If
U(θ) is a unitary matrix such that U(θ)−1F(θ)U(θ)=D(θ) where D(θ)=
diag(λ1(F (θ)), . . . , λq(F (θ))), then det(λIq − F(θ)) = det(U(θ)) det(λIq −
D(θ)) det(U(θ)−1) = det(λIq − D(θ)) = ∏q

j=1(λ − λj (F (θ)).]
For each j ∈ {1, . . . , q}, let cj denote the restriction of dj to the interval Ĩ :

cj := dj |Ĩ , (3.35)
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and let p ∈ Cω(Ĩ )[λ] be the monic polynomial of degree q given by

p = λq + c1λ
q−1 + · · · + cq. (3.36)

Then, for any θ ∈ Ĩ , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (3.37)

over the field R has q real roots: λ1(F (θ))� · · · �λq(F (θ)). Define the mapping
f :Ĩ → R[λ] by

f (θ) = Evθ (p), (3.38)

and let rj (f (θ)) denote the j th root of f (θ) counted with multiplicity, arranged
in the increasing order, where j ∈ {1, . . . , q}. Then, we obviously have

rj (f (θ)) = λj (F ((θ))) (3.39)

for all j ∈ {1, . . . , q} and θ ∈ Ĩ . Now the conclusion easily follows from theorem
2.1, the G Boundedness Theorem.

4. Concluding remarks

The notation and assumptions being as in theorem 3.3 (G Boundedness
Theorem), for each j ∈ {1, . . . , q} define the function λ̂j : Ĩ → R by

λ̂j (θ) = λj (F (θ)). (4.1)

Recall the last inequalities

‖G‖�
q∑

j=1

Mo(λj ) < ∞ (4.2)

in the proof of theorem 2.1 (G Boundedness Theorem), which uses lemma 2.1
(PML), and notice that the following inequalities hold in the setting of theorem
3.3.

‖G‖�
q∑

j=1

Mo(λ̂j ) < ∞. (4.3)

Now in the setting of theorem 3.2 (βN Uniform Boundedness Theorem) and
its proof, for each j ∈ {1, . . . , q} define the function λ̂j :Ĩ → R by (4.1), and
recall inequalities (3.28) so that by inequalities (4.3) we see that

‖βN‖�‖G‖�
q∑

j=1

Mo(λ̂j ) < ∞ (4.4)
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for all N ∈ Z
+. Note that the proof of theorem 3.1 (Special Functional ALT)

was reduced to proving the fact that (b2) sup{‖βN‖:N · 1 <}∞. Thus, by the
above argument and inequalities (4.4), one can easily overview the following log-
ical implications.

PML ⇒ G Boundedness Theorem ⇒ G Boundedness Theorem ⇒
Special Functional ALT. (4.5)

In section 3, we have reduced a proof of the Special Functional Asymptotic
Linearity Theorem to that of the G Boundedness Theorem, via the G Bounded-
ness Theorem. As can be seen in the definitions of λj (F (θ)) and rj (f (θ)) and
in the proof of the G Boundedness Theorem, the G Boundedness Theorem is a
generalization of the G Boundedness Theorem from the j th eigenvalue of the
q × q Hermitian matrix:

F(θ) =
v∑

n=−v

(exp(inθ))Qn, (4.6)

to the j th root of the polynomial of degree q with q real roots:

f (θ) = λq + c1(θ)λq−1 + · · · + cq(θ), (4.7)

where c1, . . . , cq are all real analytic functions on Ĩ = [ã, b̃].
The following theorem from [4] and its generalized analogues play an

important role in the development of the theory of generalized repeat space
Xr (q, d) [4–7].

Theorem I. Let ã, b̃, a, b ∈ R with ã < b̃ and a < b. Let Ĩ = [ã, b̃], let I =
[a, b], and let x(N, r) = ã + (b̃ − ã)r/N . Let q be a fixed positive integer and let
u1, u2, . . . , uq be fixed real analytic functions defined on Ĩ . Suppose that I con-
tains all the images of Ĩ under the functions u1, u2, . . . , uq . Let EN :AC(I) → R

be the sequence of linear functionals defned by

EN(ϕ) =
N∑

r=1

q∑
j=1

ϕ(uj (x(N, r))). (4.8)

Then, there exist functionals α, β ∈ AC(I)∗ = B(AC(I), R) such that

EN(ϕ) = α(ϕ)N + β(ϕ) + o(1) (4.9)

as N → ∞, for all ϕ ∈ AC(I).
As the final remark, we note that the G Boundedness Theorem, which is of

fundamental importance for the reduction of a proof of the Functional ALT, will
be also utilized for establishing one of the generalized analogues of the above
theorem I. The details along these lines will be published elsewhere.
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